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Abstract

Ebola virus (EBOV) infection in humans and non-human primates (NHPs) is highly lethal, and there is limited understanding
of the mechanisms associated with pathogenesis and survival. Here, we describe a transcriptomic analysis of NHPs that
survived lethal EBOV infection, compared to NHPs that did not survive. It has been previously demonstrated that
anticoagulant therapeutics increase the survival rate in EBOV-infected NHPs, and that the characteristic transcriptional
profile of immune response changes in anticoagulant-treated NHPs. In order to identify transcriptional signatures that
correlate with survival following EBOV infection, we compared the mRNA expression profile in peripheral blood
mononuclear cells from EBOV-infected NHPs that received anticoagulant treatment, to those that did not receive treatment.
We identified a small set of 20 genes that are highly confident predictors and can accurately distinguish between surviving
and non-surviving animals. In addition, we identified a larger predictive signature of 238 genes that correlated with disease
outcome and treatment; this latter signature was associated with a variety of host responses, such as the inflammatory
response, T cell death, and inhibition of viral replication. Notably, among survival-associated genes were subsets of genes
that are transcriptionally regulated by (1) CCAAT/enhancer-binding protein alpha, (2) tumor protein 53, and (3)
megakaryoblastic leukemia 1 and myocardin-like protein 2. These pathways merit further investigation as potential
transcriptional signatures of host immune response to EBOV infection.
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Introduction

Ebola virus (EBOV; Filoviridae [1]) infection of humans and

non-human primates (NHPs) can cause viral hemorrhagic fever,

an acute systemic illness characterized by fever, bleeding diathesis,

fulminant shock, and death [2]. Although several studies have

identified candidate therapeutics that may mitigate the effects of

EBOV infection [3–12], there are currently no FDA-approved

post-exposure treatments for human use. Additionally, despite

extensive research on EBOV pathogenesis [13–15], lifecycle [16],

and interactions with the host [17–19], there are no standard

biomarkers to predict host immune response to EBOV infection,

nor are there biomarkers of drug efficacy or survival following

treatment. Here, we investigated the hypothesis that there are

signatures of gene expression associated with survival in EBOV-

infected, anticoagulant-treated NHPs.

Immune response pathways play a key role in EBOV

pathogenesis. Infection is characterized by up-regulation of

inflammatory mediators such as cytokines and chemokines,

interleukins, interferon-inducible proteins, and tumor necrosis

factor alpha (TNFa) [20–25]. In addition, EBOV infection is

associated with an early loss of lymphocytes [26,27] and the

dysregulation of coagulopathy. This dysregulation of coagulation

and subsequent hemorrhage are characteristic of EBOV infection

[14,15], and may be due to the fact that immune mediators are

over-expressed by monocytes and macrophages, which, along with
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dendritic cells, are primary targets for infection [13,28,29]. High-

throughput microarray studies of the immune response of NHPs to

EBOV infection have identified dramatic and early changes in

host transcription of genes related to interferon response, cytokine

signaling, and apoptosis [22]. Similarly, studies of endothelial cells

suggest that accumulation of cytokines and other pro-inflamma-

tory factors can contribute to the observed pathologies of EBOV

infection [14]. Previous studies of clinical samples from humans

infected with Sudan virus during the 2000–2001 outbreak, suggest

that hemorrhagic symptoms and death may be associated with

acute phase proteins and coagulation factors [25].

It has been demonstrated that anticoagulant therapeutics have a

positive effect on the outcome of EBOV disease [7,9]. Notably,

approximately 33% of EBOV-infected NHPs treated with

anticoagulants, such as recombinant nematode anticoagulant

protein c2 (rNAPc2) [7], and recombinant human activated

protein C (rhAPC) [9] survived a 100% fatal EBOV infection

model (Table 1). Animals responding to anticoagulant treatment

had lower plasma viremia levels and attenuation of the pro-

inflammatory and pro-coagulant responses in both studies [7,9],

suggesting that these indicators could be markers of increased

survival. However, these late-stage markers could not identify

whether there were early transcriptional changes that were

associated with survival. In addition, these results are limited in

scope to individual gene and protein assays, which cannot assess

the host immune response to infection from a global, transcrip-

tional viewpoint [7,9]. To identify early-stage transcriptional

changes, we analyzed an existing microarray dataset that

examined the host gene expression in anticoagulant-treated NHPs.

We used this dataset to identify critical transcriptional changes that

differentiate between surviving and non-surviving NHPs following

EBOV infection. These results provide critically distinct assess-

ments of the host immune response to EBOV infection by

identifying not only global changes in transcription, but also

transcription factor activities associated with survival.

We analyzed the transcriptional profiles of peripheral blood

mononuclear cell samples taken from EBOV-infected NHPs

treated with either rNAPc2 or rhAPC, as described previously

[7,9,24]. We investigated the hypothesis that gene expression

patterns are associated with survival of EBOV challenge following

anticoagulant treatment. A previous study assessed the global

transcriptional response of NHPs to EBOV infection, but was

unable to identify survival-associated profiles, due to a lack of

anticoagulant treatment [22]. Previously, we assessed the global

transcriptional response in the context of anticoagulant treatment,

but did not seek to identify upstream transcriptional regulators

associated with survival [24]. Here, we used a new method of

analysis to identify gene sets which are associated with, and

predictive of, survival following post-infection treatment. This

approach identified two sets of statistically significant genes that

distinguish between surviving and non-surviving NHPs. One, a

minimal set of 20 genes, showed good discrimination between

survivors and non-survivors, but provided little insight into

signaling pathways that might be correlated with survival. The

second, a larger set of 238 genes, identified a number of genes that

were functionally controlled by common transcription factors that

have not been previously associated with EBOV infection in

NHPs.

Materials and Methods

Animal experiments and ethics statement
The datasets for this study were collected from previously

published results studying the affect of anticoagulant therapeutics

(rhAPC and rNAPc2) on the immune response of non-human

primates (NHPs) to lethal Ebola virus (H.sapiens-tc/COD/1995/

Kikwit-9510621; EBOV). Virus was passaged twice through

VeroE6, and once through Vero cells, prior to use. Additional

experimental methods and results of the rhAPC and rNAPc2

studies have previously been described in Geisbert et al. [7] and

Hensley et al. [9], respectively (Table 1). The cumulative dataset

used in this study includes 23 rhesus macaques: 4 untreated

controls, 8 rNAPc2-treated NHPs, and 11 rhAPC-treated NHPs

(Table 2). A total of 4 NHPs survived lethal challenge with EBOV

virus (2 rNAPc2-treated and 2 rhAPC-treated).

Animal research for these previously published studies was

conducted at the United States Army Medical Research Institute

for Infectious Diseases, in compliance with the Animal Welfare

Act and other federal statutes and regulations relating to animals

and experiments involving animals, and adheres to the principles

stated in the Guide for the Care and Use of Laboratory Animals,
National Research Council, 1996. The facility is fully accredited

by the Association for Assessment and Accreditation of Laboratory

Animal Care, International. These experiments and procedures

were approved by the USAMRIID Institutional Animal Care and

Use Committee (IACUC).

Sample preparation and microarray processing
Experimental methods for RNA processing and DNA micro-

array preparation have been previously described in Yen et al.
[24]. Microarrays were analyzed in R, using the LIMMA package

in Bioconductor [30–32] and processed as follows: (i) background

correction was done using the subtract method [33]; (ii) within-

array normalization was done using the loess method [34]; (iii) log

ratio and log intensity values were calculated; (iv) array control

probes were removed from the dataset; and, (v) the data were zero-

transformed within each animal using baseline (pre-infection)

sample; in the case of multiple pre-infection samples, Day 0 was

used (Figure S1). The raw microarray dataset was deposited in

NCBI’s Gene Expression Omnibus (GEO; [35]) database (Acces-

sion: GSE24943; [24]).

We organized the microarrays into three groups based on NHP

response to anticoagulant drug treatment: (i) EBOV-infected

NHPs that did not receive anticoagulant treatment (‘‘EBOV

Only’’; EO); (ii) anticoagulant-treated NHPs that survived EBOV

infection (‘‘EBOV infected, Treated Survivors’’; ETS); and, (iii)

anticoagulant-treated NHPs that did not respond to treatment and

did not survive EBOV infection (‘‘EBOV infected, Treated Non-

Author Summary

Infection of humans and non-human primates (NHPs) with
Ebola virus (EBOV) can cause viral hemorrhagic fever, an
acute systemic illness which can lead to death. The high
case fatality rates (25%–90%) make EBOV a virus of
significant concern from a biodefense perspective. To
date, there are no FDA-approved post-exposure treat-
ments for human use, and there are no standard assays to
predict how infected individuals will fare after becoming
infected. We have analyzed how circulating immune cells
respond to EBOV infection under conditions where NHPs
either survive viral infection, or succumb to it. This analysis
identified genes that are correlated with, and predictive of,
survival following lethal EBOV infection in NHPs. Our
results demonstrate that small gene sets and transcrip-
tional regulatory networks can be used to identify
individual markers associated with survival following EBOV
infection.
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Survivors’’; ETNS), which were characterized by a mean time to

death indistinguishable from untreated NHPs, i.e. animals died

prior to Day 10 post-infection. A fourth group, characterized by

treated, non-surviving NHPs with a mean time to death greater

than the untreated controls, was excluded because any results

would have been uninformative with regard to survival or

treatment-specific transcriptional signatures. We limited our

microarrays to Days 3 and 6 post-infection, because these

timepoints were available for all treatment groups. A total of 23

arrays were included in the comparison: 4 arrays for each

treatment group on both Day 3 and Day 6, except for the EO

group on Day 3, which only had 3 samples (Table 2).

Identification of a minimal survival-associated gene set
To identify the minimal number of genes which distinguish

survivors from non-survivors, we grouped the ‘‘EBOV Only’’ and

‘‘EBOV infected, Treated Non-Survivors’’ groups together into one

cumulative ‘‘Non-Survivor’’ (NS) group. We compared survivors

against non-survivors on Day 3, Day 6, and Days 3 and 6 together

(Figure S1). Gene expression was averaged within each treatment

group for individual probes, and the difference in mean expression

(DM ) for individual probes was calculated as follows:

DM~ ETS{NS
�� ��

where ETS is the mean expression in survivors (ETS), and NS is the

mean expression in non-survivors (NS). The probe (and its

corresponding gene) is considered biologically relevant if, in at least

one of the three comparisons, it meets the following criteria: (i)

statistical significance (Student’s t-test, unequal variance; P#0.05);

(ii) large magnitude (DM$2); and (iii) the differences in individual

values across a treatment group are in agreement with the difference

in means (within-group agreement).

Identification of general survival-associated
transcriptional profile

To determine whether there is a general transcriptional profile

associated with survival, we analyzed Day 3 and 6 arrays in

EBOV-infected survivors and compared them against NHPs that

did not survive infection using six comparisons: the ETS group to

the ETNS group, and the ETS group to the EO group, at three

time points: Day 3, Day 6, and Days 3 and 6 together (Figure S1).

Gene expression was averaged and the difference in mean

expression (DM ) for individual probes is calculated as follows:

DM~ ETS{ �XX
�� ��

where ETS is the mean expression in survivors (ETS), and �XX is the

mean expression in either of the two non-survivor groups (ETNS

or EO). The probe (and its corresponding gene) was considered

biologically relevant if, in at least one of the six comparisons, it met

the previously described criteria.

Statistical analysis and validation
The correlation between identified genes and survival was

evaluated for statistical accuracy using a permutation test of

hierarchical clustering. Expression values for each gene were

randomly permutated among arrays (1000 trials); for each trial,

complete linkage hierarchical clustering was used to evaluate

whether the gene list separated NHPs which survived infection

from NHPs that did not survive infection (Pearson correlation

coefficient). Clustering was completed using PyCluster [36] and

Cluster 3.0 [37]. Heatmaps and dendrograms were generated

using Java TreeView [38], and networks were rendered in

Cytoscape [39]. The classification ability of each gene set was

evaluated using leave-one out cross-validation and receiver

operating characteristic (ROC) curves. Classification was evaluat-

ed by comparing the sum of normalized distances of the left-out

sample to the mean of the survivor and non-survivor groups, for

each gene in the gene set. The area under the curve (AUC) was

used to evaluate performance of each gene set.

Biologically and statistically relevant genes were probed for

functional annotation, pathways, and upstream transcriptional

regulators using the Ingenuity Pathway Analysis suite of software

(IPA; Ingenuity Systems). We confirmed the expression profile of a

subset of our gene set using two comparisons: (1) an independently

derived microarray dataset which examined changes in gene

expression in EBOV-infected NHPs without anticoagulant treat-

ment; and, (2) reverse transcription-PCR. We examined expres-

sion over the course of infection using the following equation:

DMMA,VDS~ MAX

� �
{ VDSX

� ��� ��

Where MAX is the mean expression in our dataset on Day 3 or

Day 6, and VDSX is the mean expression in the ‘‘Validation

Dataset’’, either the second microarray dataset or the RT-PCR, on

Day 3 or Days 5/6. We consider ‘‘complete agreement’’ to be a

case where the direction of expression in our dataset and the

Table 1. Summary of methods and results from previous publications.

Dataset 1 Dataset 2

Study EBOV infected NHPs, treated with rNAPc2 [7] EBOV infected NHPs, treated with rhAPC (Xigris) [9]

Survival 33% (3/9 NHPs receiving rNAPc2). Mean time to
death: 8.3 days (EBOV only); 11.7 days (EBOV+rNAPc2).

18% (2/11 NHPs receiving rhAPC). Mean time to
death: 8.3 days (EBOV only); 12.6 days (EBOV+rhAPC).

Number of Samples Used in This Study*

Survivor2rNAPc2 – Survivor2rhAPC –

Survivor+rNAPc2 2 Survivor+rhAPC 2

Non-Survivor2rNAPc2 2 Non-Survivor2rhAPC 2

Non-Survivor+rNAPc2 6 Non-Survivor+rhAPC 9

This table briefly describes the infectious agent, treatment, methods, and results previously been described in Geisbert et al. [7] and Hensley et al. [9].
EBOV: Zaire Ebolavirus. NHP: non-human primate. rNAPc2: recombinant nematode anticoagulant protein c2. rhAPC: recombinant human activated protein C.
* Remaining animals did not have samples available for cDNA microarray analysis.
doi:10.1371/journal.pntd.0003061.t001
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validation dataset are the same (e.g. both up-regulated); ‘‘minor

disagreement’’ is a case where the direction of expression is

opposing in the microarray and validation datasets, but is within 1

log2 fold change of difference, and therefore not significantly

different; and, ‘‘major disagreement’’ is a case where the direction

of expression in the microarray and validation datasets are

opposing and significant in magnitude (.1). We evaluated

whether the RT-PCR results reflect similar trends in expression,

compared to the microarray data, by calculating the percentage of

‘‘complete agreement’’ or ‘‘minor disagreement’’ cases.

We compared the 245 probes from our gene set to the second

microarray, for EBOV-infected NHPs that did not receive

anticoagulant treatment. Of the 245 probes in our gene set, only

182 were available on the second microarray for confirmation

(74.3%). When comparing the two microarray datasets, an

average of 132.5 probes (72.8%) were in complete agreement or

minor disagreement regarding the changes in expression from

baseline to Day 3 or Days 5/6. Of the remaining probes, the

majority were cases in which one microarray dataset was not

differentially expressed but the other was, or vice versa; there were

only 8 cases of significant and opposing disagreement between the

two microarray datasets (4.4%).

We also confirmed a subset of our gene set using RT-PCR. Of

the 245 probes of interest, we tested 56 genes that were associated

with the upstream transcriptional regulators we identified previ-

ously; of these 56 genes, 45 passed the quality testing. For EBOV-

infected NHPs that did not receive anticoagulant treatment

(‘‘EBOV Only’’), an average of 34.5 probes (76.7%) were either

in complete agreement or minor disagreement with respect to

expression on Days 3 and 6. For EBOV-infected, anticoagulant-

treated NHPs that did not survive (‘‘EBOV infected, Treated Non-

Survivors’’), an average of 34 (75.6%) probes were either in

complete agreement or minor disagreement. Finally, for EBOV-

infected, anticoagulant-treated NHPs that survived infection

(‘‘EBOV infected, Treated Survivors’’), an average of 37.8

(83.9%) probes were either in complete agreement or minor

disagreement between the microarray dataset and RT-PCR.

Results

Identification of a minimal survival-associated gene set in
EBOV-infected, anticoagulant-treated NHPs

Previous studies have reported that NHPs exhibit strong

transcriptional changes in response to EBOV infection [22,24].

We were interested in determining if these transcriptional changes

were altered by anticoagulant treatment; specifically, we were

interested to determine if there were any transcriptional correlates

associated with survival of EBOV infection.

To determine the minimal number of genes which were

associated with survival, we analyzed changes in mRNA expres-

sion in EBOV-infected NHPs with and without anticoagulant

treatment. Previously published data was used to build a

cumulative group of 23 EBOV-infected NHPs ([7,9]; Table 1): 4

EBOV-infected controls that did not receive anticoagulant

treatment, 8 EBOV-infected NHPs that were treated with

rNAPC2, and 11 EBOV-infected NHPs that were treated with

rhAPC (Table 2). We organized the samples into three groups: (i)

EBOV-infected, untreated non-survivors (‘‘EBOV Only’’; EO); (ii)

EBOV-infected, anticoagulant-treated survivors (‘‘EBOV-infected,

Treated Survivors’’; ETS); and, (iii) EBOV-infected, anticoagu-

lant-treated, non-survivors (‘‘EBOV-infected, Treated Non-Survi-

vors’’; ETNS), which were characterized by a mean time to death

indistinguishable from untreated NHPs. In order to identify a set

of probes which were associated with survival and not just

T
a

b
le

2
.

Su
m

m
ar

y
o

f
sa

m
p

le
s

u
se

d
in

th
is

st
u

d
y.

G
ro

u
p

E
B

O
V

O
n

ly
E

B
O

V
-i

n
fe

ct
e

d
,

T
re

a
te

d
N

o
n

-S
u

rv
iv

o
r

E
B

O
V

-i
n

fe
ct

e
d

,
T

re
a

te
d

S
u

rv
iv

o
r

D
a

y
/S

a
m

p
le

1
2

3
4

1
2

3
4

5
1

2
3

4

2
8

N
N

N
N

N
N

N

0
N

N
N

N
N

N
N

N
N

3
N

N
N

N
N

N
N

N
N

N
N

6
N

N
N

N
N

N
N

N
N

N
N

N

rN
A

P
c2

2
2

2
2

+
2

2
2

2
+

+
2

2

rh
A

P
C

2
2

2
2

2
+

+
+

+
2

2
+

+

D
e

si
g

n
a

ti
o

n
C

H
7

8
C

H
5

2
D

B
7

U
G

T
X

A
X

X
L2

0
1

-2
C

H
7

3
C

L4
R

9
4

E1
3

6
A

A
0

1
6

C
H

0
4

D
B

1
D

D
B

1
L

D
a

y
o

f
D

e
a

th
:

9
8

8
8

8
9

7
7

8
2

2
2

2

T
h

is
ta

b
le

d
e

p
ic

ts
th

e
sa

m
p

le
s

(d
o

ts
)

u
se

d
in

th
is

st
u

d
y.

Sa
m

p
le

s
ar

e
g

ro
u

p
e

d
ve

rt
ic

al
ly

b
as

e
d

o
n

tr
e

at
m

e
n

t,
th

e
n

b
y

in
d

iv
id

u
al

an
im

al
.S

am
p

le
s

ar
e

al
so

g
ro

u
p

e
d

h
o

ri
zo

n
ta

lly
b

y
d

ay
p

re
-

an
d

p
o

st
-i

n
fe

ct
io

n
.S

u
m

m
ar

y
in

fo
rm

at
io

n
in

cl
u

d
e

s
ap

p
lie

d
tr

e
at

m
e

n
t

(i
f

an
y)

,
an

d
d

at
e

o
f

d
e

at
h

fo
r

e
ac

h
an

im
al

.
D

e
si

g
n

at
io

n
s

ar
e

fr
o

m
th

e
o

ri
g

in
al

p
u

b
lic

at
io

n
s,

G
e

is
b

e
rt

et
a

l.
[7

]
an

d
H

e
n

sl
e

y
et

a
l.

[9
].

EB
O

V
:

Z
ai

re
Eb

o
la

vi
ru

s.
rN

A
P

c2
:

re
co

m
b

in
an

t
n

e
m

at
o

d
e

an
ti

co
ag

u
la

n
t

p
ro

te
in

c2
.

rh
A

P
C

:
re

co
m

b
in

an
t

h
u

m
an

ac
ti

va
te

d
p

ro
te

in
C

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
n

td
.0

0
0

3
0

6
1

.t
0

0
2

Transcriptional Correlates of Survival Following Ebolavirus Infection

PLOS Neglected Tropical Diseases | www.plosntds.org 4 July 2014 | Volume 8 | Issue 7 | e3061



treatment responses, we compared the gene expression of NHPs

that survived EBOV infection (ETS) to those that did not survive

(‘‘Non-Survivors’’, NS; a combination of the EO and ETNS

groups) on Days 3 and 6 post-infection. Probes were considered of

interest if the difference in expression between groups was

statistically significant (Student’s t-test, unequal variance; P#

0.05), with a large change in transcriptional magnitude (DM$2),

and had within-group coherence (see Materials and Methods).
We identified a total of 20 unique probes which differentiated

between the NHPs that survived EBOV infection (ETS) and those

that did not (NS). These probes corresponded to 16 annotated

genes, 3 genetic loci, and 1 microRNA (Figure 1). There are two

obvious patterns of differentially expressed genes which exhibit

significant and opposing regulation in the two groups (Figure 1A):

(i) 6 genes have higher expression values in survivors compared to

non-survivors (CLDN3, ILF2, ILF3, NDUFA12, RUVBL2, and

SLC38A5); and, (ii) 10 genes have lower expression values in

survivors compared to non-survivors (ACCN1, CEBPE, CRHR2,

FAM63A, HMP19, IL2RA, LTF, PSMA1, RCHY1, and

SLC9A7). Finally, the genetic loci (AC009283, LOC100289371,

and LOC440871) and microRNA (miR-122) also appear to be

down-regulated in survivors compared to non-survivors.

Due to the minimal size of the gene set, it is difficult to perform

functional enrichment or pathway analysis; however, identification

of individual gene traits and annotation is useful for elucidating

how individual genes may be associated with viral infection. For

example, over half of these genes have been previously associated

with viral infection or replication, or have been found to physically

interact with viral proteins (e.g. CLDN3 [40]; CRHR2 [41]; ILF2

[42,43]; ILF3 [44,45]; LTF [46–50]; miR-122 [51]; RCHY1 [52];

and, RUVBL2 [53]). Importantly, none of these genes have been

linked to EBOV infection, with the exception of ILF3, of which an

isoform called DRBP76 is known to bind EBOV protein VP35

[54]. Although miR-122 has not been associated with EBOV

infection, it is a known positive regulator of the replication of

hepatitis C virus, another RNA virus [55,56]. Additionally, several

of the genes associated with survival encode for transport and

membrane proteins (e.g. ACCN1, CLDN3, HMP19, NDUFA12,

SLC9A7, and SLC38A5), suggesting that small-molecule transport

proteins may play a role in survival of EBOV challenge. Several

gene products are also associated with immune response or

inflammatory response (e.g. CRHR2, IL2RA, LTF, and PSMA1),

which is consistent with previously published studies investigating

the effects of EBOV on gene expression [21,22,24].

Having identified a minimal survival-associated gene set, we

were interested in determining whether it could accurately

distinguish between survivors and non-survivors. Hierarchical

clustering is a common way to use the characteristics of a gene set

to determine if datasets are similar or dissimilar. We used

hierarchical clustering to demonstrate that we could separate

survivors (green) from non-survivors, using only this small gene set,

with a high degree of significance (permutation test, one-tailed P,

0.0001; Figure 1B). In addition, we evaluated the cumulative

ability of the gene set to distinguish survivors from non-survivors,

based on individual gene traits, using leave-one-out cross-

validation. This approach tests the robustness of a classifier, by

using one sample as a testing set and the remaining samples as a

training set, then classifying the left-out sample based on the

training set. This procedure is repeated for all samples, and the

robustness of a classifier is evaluated by a receiving operator

characteristic (ROC) curve [57–59]. Leave-one-out cross-valida-

tion showed that our classifier correctly classified samples with

100% accuracy, i.e. no survivors were mistakenly classified as non-

survivors, or vice versa (AUC = 1.00; Figure 1C).

Identification of general survival-associated
transcriptional profile

Although a minimal gene set can be useful for identifying

individual genes associated with survival, we were also interested

to know whether there was a general transcriptional profile

Figure 1. Identification of a small gene set is sufficient for
classification of survival in EBOV-infected, anticoagulant-
treated NHPs. (A) A heatmap depicting the gene expression values
of 20 genes which were found to distinguish between ‘‘EBOV-infected,
Treated Survivors’’ (ETS) and Non-Survivors (‘‘EBOV Only’’ and ‘‘EBOV-
infect, Treated Non-Survivors’’; see Materials and Methods). The days post-
infection are labeled at the top of each column. Blue indicates down-
regulation, and red indicates up-regulation, of genes compared to pre-
infection baseline, white indicates no change in expression (scale
indicated). Gene names are listed to the right. (B) A dendrogram
depicting hierarchical clustering of individual samples, using the set of 20
genes (permutation test, one-tailed P,0.0001). ETS samples are indicated
in green; samples are labeled ‘‘groupX_Y’’, where X is the sample number
and Y is the days post-infection. (C) A ROC curve depicting how
accurately this gene set can classify survivors and non-survivors, based on
leave-one-out cross-validation (AUC = 1.00). This gene set is indicated in
black, and a random ROC curve is indicated in grey.
doi:10.1371/journal.pntd.0003061.g001
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associated with survival. In particular, we were interested to know

if NHPs that survived EBOV infection displayed coordinated

enrichment of specific signaling pathways or transcriptional

responses. To identify a broad, survival-associated transcriptional

profile that was also associated with anticoagulant treatment, we

compared the expression profiles of anticoagulant-treated NHPs

that survived EBOV infection (ETS) to NHPs that did not receive

anticoagulant treatment (EO) and to NHPs that received

anticoagulant treatment but did not survive EBOV infection

(ETNS). We compared survivors to the two non-survivor groups

(EO or ETNS) on Day 3, Day 6, and Days 3 and 6 together;

probes were chosen according to the previously described criteria

(see Materials and Methods).
Using this approach, we identified a total of 245 unique probes,

corresponding to 238 annotated genes, which accurately differen-

tiated the three groups (Figure 2). Hierarchical clustering of the

245 probes showed that the probes clustered into four gene

expression patterns: (1) down-regulation in the EO group on both

days, compared with up-regulation in survivors on both days; (2)

down-regulation in the ETNS group on Day 6, compared with up-

regulation in survivors on both days; (3) up-regulation in the non-

survivor groups on both days, compared with down-regulation in

survivors on both days; and, (4) up-regulation in the non-survivor

groups on Day 6, compared with down-regulation in survivors on

both days (Figure 2A). In general, the overall pattern of these

separate clusters is one of significant and opposing regulation of

expression when comparing NHPs that survived EBOV infection

to NHPs that did not survive infection, regardless of treatment.

Analysis of the overall gene set using Ingenuity Pathway

Analysis (IPA; Ingenuity Systems) identified several statistically

significant cellular and molecular functions, including cell death

and survival, cellular growth and proliferation, infectious disease,

cell cycle, and immune cell trafficking. In addition, we probed the

4 gene clusters to determine if there were any cluster-specific

pathways or networks that were functionally enriched. We found

that the four main clusters were associated with: (1) molecular

transport, cell-mediated immune response, and cell development;

(2) cellular growth and proliferation, drug metabolism, cell death

and survival, cell-to-cell signaling and interaction, and cell cycle;

(3) cell-to-cell signaling and interaction, hematological system

development and function, and cellular growth and proliferation;

and, (4) cellular compromise, and cell morphology (Figure 2A). In

particular, we observed that many of the genes in Cluster 2 were

associated with cell metabolism, suggesting that this process is

down-regulated in non-survivors when compared to survivors.

Figure 2. Survival following anticoagulant treatment is asso-
ciated with a broad transcriptional profile. (A) A heatmap
depicting the gene expression values of 245 probes (238 genes) which

were found to distinguish between ‘‘EBOV-infected, Treated Survivors’’
(ETS), ‘‘EBOV-infect, Treated Non-Survivors’’, and NHPs that did not
receive anticoagulant treatment (‘‘EBOV Only’’; see Materials and
Methods). The days post-infection are labeled at the top of each
column. Blue indicates down-regulation, and red indicates up-regula-
tion, of genes compared to pre-infection baseline; white indicates no
change in expression (scale indicated). Probes are grouped into 4
clusters, denoted by numbers to the left of the heatmap. Functional
annotation of each cluster is listed in bold to the right of the heatmap,
along with a list of representative genes associated with the annotation.
(B) A dendrogram depicting hierarchical clustering of individual
samples, using the gene set of 245 probes (permutation test, one-
tailed P,0.0001). ETS samples are indicated in green; samples are
labeled ‘‘groupX_Y’’, where X is the sample number and Y is the days
post-infection. (C) A ROC curve depicting how accurately this gene set
can classify survivors and non-survivors, based on leave-one-out cross-
validation (AUC = 1.00). This gene set is indicated in black, and a random
ROC curve is indicated in grey.
doi:10.1371/journal.pntd.0003061.g002
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Cluster 3 is also heavily associated with immune and inflammatory

responses, and several genes are expressed predominantly by

immune cells. These functional annotations are consistent with

previous studies assessing host immune response to EBOV

infection using microarrays [22,24]. For example, we observed

up-regulation of genes associated with innate immune response,

regulation of cytokine and chemokine production, regulation of

apoptosis, and interferon response, as reported in previous studies

[22,24]. The observed regulation of these genes is consistent with

the hypothesis that non-survivors experience severe dysregulation

of the immune response, as opposed to survivors, which maintain a

normal level of expression [22,24].

To evaluate the classification of our gene set, we hierarchically

clustered individual arrays ([37]; complete linkage method; Fig-

ure 2B). The resulting dendrogram has two major branches, in

which NHPs that survive EBOV infection (green) cluster separately

from those that did not (black; Figure 2B), indicating that the

expression profiles of survivors is distinguishable from the expression

profile of non-survivors. Correspondingly, this gene set allowed us to

accurately distinguish between the survivors and the combined non-

survivor groups (permutation test, one-tailed P,0.0001); however,

we found no significant difference in the expression profiles when

comparing the two non-survivor groups. Additionally, this gene set

is capable of perfectly classifying survivor and non-survivor groups

(Figure 2C). As in Figure 1, we used leave-one-out cross-validation

to evaluate whether survivors could be distinguished from non-

survivors. We found that cross-validation was able to correctly

classify samples with 100% accuracy, i.e. no survivors were

mistakenly classified as non-survivors, or vice versa (AUC = 1.00;

Figure 2C). These two tests confirm that the expression profiles of

survivors are distinguishable from the expression profile of non-

survivors; however, the expression profile of untreated non-

survivors (EO) is indistinguishable from that of treated non-

survivors (ETNS). Finally, we compared this list of 238 genes

against the previously identified list of 20 probes which were highly

predictive for distinguishing between survivors and non-survivors.

Of the 20 probes, we found that 17 (85%) also appeared in the set of

238 genes. These results confirm that the 238 genes are predictive

for distinguishing between treatment groups and survival outcomes,

and that the predictive power is comparable to the list of 20 highly

predictive genes.

Survival-associated genes are transcriptionally
interconnected

To further investigate how these survival-associated genes are

functionally associated, we determined if the genes were

transcriptionally related, e.g. by being participants in a major

pathway or signaling network, or by having a common upstream

transcriptional regulator. We used IPA to probe the set of 238

genes in order to identify transcriptional regulators that were

common to a large number of genes in our dataset.

This analysis identified four transcription factors whose

downstream targets were statistically over-represented in our

network: CCAAT/enhancer-binding protein alpha (CEBPA;

Fisher’s exact test, P,0.0001), tumor protein 53 (p53; P,

0.001), megakaryoblastic leukemia 1 (MKL1; P,0.0001) and

myocardin-like protein 2 (MKL2; P,0.0001). The probability of

finding at least as many up-stream transcriptional regulators in a

gene set of 245 probes is extremely unlikely, suggesting that this

result is not due to random chance (re-sampling, P<0.01). The

transcription factors and their targets are shown in Figure 3, which

shows genes colored according to the difference in mean

expression between NHPs that survived EBOV infection and

those that did not. This network of transcription factors and their

downstream targets is highly interconnected, with several

transcription factors sharing targets; in particular, MKL1 and

MKL2 appear to co-regulate all their targets (Figure 3). As would

be expected for transcription factors that are post-translationally

activated, the four transcription factors were not themselves

significantly differentially regulated in our dataset. For each

transcription factor, we compared the expression of the down-

stream targets in NHPs which survived infection to NHPs that did

not survive infection, to determine if downstream targets

correlated with survival.

CCAAT/enhancer binding protein alpha (CEBPA)-
regulated genes are down-regulated in NHPs that survive
EBOV infection when compared to non-survivors

Of the 238 genes associated with a transcriptional pattern

correlated with survival, 13 genes are transcriptionally regulated

by CEBPA (Figure 4). Of these, 2 probes (CEBPE, and IFI6)

distinguished NHPs that survived infection (‘‘EBOV-infected,

Figure 3. Survival-associated genes are transcriptionally inter-
connected. A network illustrating transcriptional connections between
37 genes which distinguish between ‘‘EBOV-infected, Treated Survivors’’
(ETS), ‘‘EBOV-infect, Treated Non-Survivors’’ (ETNS), and NHPs that did
not receive anticoagulant treatment (‘‘EBOV Only’’; see Materials and
Methods). Nodes are labeled with the gene name, edges indicate
regulation of expression from transcription factor to target gene; arrows
indicate up-regulation, bars indicate down-regulation, circles indicate
up- and down-regulation, and unmarked, light grey edges indicate
unknown regulation. Nodes are colored according to the difference in
mean expression between the ETS and ‘‘Non-Survivor’’ (NS; ETNS and
EO) groups; blue indicates lower expression values in the ETS group
compared to the NS group, red indicates higher expression values in
the ETS group compared to the NS group (scale indicated). Nodes that
are colored grey (e.g. p53) are master transcriptional regulators which
were not identified as being differentially expressed by our protocol.
doi:10.1371/journal.pntd.0003061.g003
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Treated Survivors’’; ETS) from those that did not (‘‘Non-

Survivors’’; NS). Both probes had lower expression values in the

ETS group. Five probes distinguished between survivors and

‘‘EBOV-infected, Treated Non-Survivors’’ (ETNS); 3 of these

probes had higher expression values in survivors (ARL4C, CDC37,

and PCNA), and 2 had lower expression values in survivors (ISG15

and S100A9). Six probes distinguished between survivors and the

‘‘EBOV Only’’ (EO) group, of which 4 had lower expression values

in survivors (CFD, FOXO3, HPR, and PTGS1). One probe,

SPINT2, distinguished between survivors and the EO group only

on Day 6. One gene, LTF, was identified by two non-identical

probes; one probe distinguished survivors from both non-survivor

groups, whereas the other probe only distinguished between

survivors and the ‘‘EBOV Only’’ group. In both cases, the probe

had lower expression values in survivors (Figure 4A).

To confirm this expression pattern, we used RT-PCR to

examine a subset of the CEBPA-regulated genes (data not shown).

We examined 11 of the 13 genes by comparing the changes in

expression on Days 3 and 6 in the microarray dataset to the RT-

PCR dataset (see Materials and Methods). The RT-PCR dataset

reflected the trends observed in the microarray dataset with above

60% accuracy in all three treatment groups (EO: 68.2%; ETNS:

77.3%; ETS: 88.6%). For CEBPA-regulated genes, the RT-PCR

confirms the expression trends observed in the microarray dataset.

The observed expression patterns of the downstream targets are

consistent with decreased transcriptional activity of CEBPA

(Figure 4B), when compared to a previous study which identified

transcriptional targets of CEBPA (GEO accession GSE2188, [60]).

Although there is a clear pattern of expression that suggests an

underlying biological mechanism (i.e. down-regulation of

CEBPA), this set of probes alone is insufficient to statistically

distinguish between NHPs that survived EBOV infection and

those that did not. Hierarchical clustering of CEBPA target

expression patterns in individual arrays reveals a dendrogram in

which the survivor and non-survivor groups are not discrete

(Figure 4C; ETS indicated in green). There is some similarity

between the expression profiles of survivors (green) and non-

survivors, especially treated non-survivors (ETNS), which appears

to be driven by within-animal responses, and not by treatment or

survival (Figure 4C). However, we found that leave-one-out cross-

validation was able to correctly classify samples with high

accuracy, i.e. very few survivors were mistakenly classified as

non-survivors (AUC = 0.92; Figure 4D). This result demonstrates

that, when considering the CEBPA signature as a classifier,

survivors are distinguishable from non-survivors, but with less

accuracy than the full gene sets identified in Figures 1 and 2.

Tumor protein 53 (p53) regulates transcription of some
survival-associated genes

We identified 26 probes, corresponding to 26 genes, which are

transcriptionally regulated by p53 (Figure 5A). Of these, 2 probes

Figure 4. CCAAT/enhancer binding protein alpha (CEBPA)-
regulated genes are down-regulated in NHPs that survive
EBOV infection when compared to non-survivors. (A) A heatmap
depicting the gene expression values of 14 probes (13 genes) which are
transcriptionally regulated by CEBPA. The days post-infection are
labeled at the top of each column. Probes are grouped according to
which comparison identified them, listed to the left. Gene names are
listed to the right. Blue indicates down-regulation, and red indicates up-
regulation, of genes compared to pre-infection baseline, white indicates
no change in expression (scale indicated). (B) A network illustrating
transcriptional connections between the 14 genes and CEBPA. Blue

indicates lower expression values in ‘‘EBOV-infected, Treated Survivors’’
(ETS), compared to ‘‘Non-Survivors’’ (NS), red indicates higher expres-
sion values in the ETS group compared to the NS group (scale
indicated). Grey nodes (e.g. CEBPA) were not identified as being
differentially expressed by our protocol. (C) A dendrogram depicting
hierarchical clustering of individual samples, using the gene set of 14
probes. ETS samples are indicated in green; samples are labeled
‘‘groupX_Y’’, where X is the sample number and Y is the days post-
infection. (D) A ROC curve depicting how accurately this gene set can
classify survivors and non-survivors, based on leave-one-out cross-
validation (AUC = 0.92). This gene set is indicated in black, and a random
ROC curve is indicated in grey.
doi:10.1371/journal.pntd.0003061.g004
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(CDC42 and ISG15) distinguished NHPs that survived EBOV

infection (‘‘EBOV-infected, Treated Survivors’’; ETS) from those

that did not (‘‘Non-Survivors’’; NS); in addition, both probes had

lower values in survivors. Nine probes distinguished between

survivors and ‘‘EBOV-infected, Treated Non-Survivors’’ (ETNS),

of which 7 had higher expression in survivors (BMP1, KRT8,

MDH2, PCNA, PLTP, POLD2, and TGFBI), and 2 had lower

expression values in survivors (CDK2 and TTK). Fifteen probes

distinguished between survivors and the ‘‘EBOV Only’’ (EO)

group, of which 7 had higher expression values in survivors

(ADH5, CSTF1, FAM3C, FXYD3, H2AFX, PRDX2, and

RPSA), and 8 had lower expression values in survivors (BCL2L1,

FERMT2, FOXO3, GSTM5, MVK, PSMA1, PTGS1, and

SERPINB9; Figure 5B). However, the observed expression

patterns of these targets were not consistent with any clearly

defined activation or repression of p53, suggesting that the

transcription factor may be differently regulated in different cell

types within the PBMC population.

To confirm this expression pattern, we used RT-PCR to

examine a subset of the P53-regulated genes (data not shown). We

examined 20 of the 26 genes (76.9%) by comparing the changes in

expression on Days 3 and 6 in the microarray dataset to the RT-

PCR dataset (see Materials and Methods). The three treatment

groups had comparable levels of agreement between the RT-PCR

dataset and the microarray dataset (EO: 70%; ETNS: 72.5%;

ETS: 80%). For P53-regulated genes, the RT-PCR confirms the

expression trends observed in the microarray dataset.

In a comparison to an independently derived dataset examining

the effects of p53 dosage, we found that approximately 50% of our

p53 targets had an expression pattern concordant with p53

activation, whereas the other 50% had discordant expression

patterns which suggested inhibition or down-regulation of p53

(GEO accession GSE11547, Hosako et al.). Because a consensus

pattern of expression could not be established, we cannot draw

conclusions about the activity of p53 in NHPs that survived EBOV

infection when compared to non-survivors. Despite this lack of

consensus regarding the activity of p53 in different treatment

groups, hierarchical clustering revealed that this set of probes is

able to distinguish survivors and non-survivors with some accuracy

(Figure 5C; ETS indicated in green; permutation test, one-tailed

P,0.0001). The observed dendrogram has three major branches:

(i) an ETS cluster, which is clearly separated from the other

branches of the tree; (ii) an ETNS cluster with two misclassified

arrays, which are EO and ETS samples; and, (iii) an EO cluster.

This suggests that the gene set is sufficient to distinguish survivors

Figure 5. Tumor protein 53 (p53) regulates transcription of
some survival-associated genes. (A) A heatmap depicting the gene
expression values of 26 probes (26 genes) which are transcriptionally

regulated by p53. The days post-infection are labeled at the top of each
column. Probes are grouped according to which comparison identified
them, listed to the left. Gene names are listed to the right. Blue
indicates down-regulation, and red indicates up-regulation, of genes
compared to pre-infection baseline, white indicates no change in
expression (scale indicated). (B) A network illustrating transcriptional
connections between the 26 genes and p53. Blue indicates lower
expression values in ‘‘EBOV-infected, Treated Survivors’’ (ETS), com-
pared to ‘‘Non-Survivors’’ (NS), red indicates higher expression values in
the ETS group compared to the NS group (scale indicated). Grey nodes
(e.g. p53) were not identified as being differentially expressed by our
protocol. (C) A dendrogram depicting hierarchical clustering of
individual samples, using the gene set of 26 probes (permutation test,
one-tailed P,0.0001). ETS samples are indicated in green; samples are
labeled ‘‘groupX_Y’’, where X is the sample number and Y is the days
post-infection. (D) A ROC curve depicting how accurately this gene set
can classify survivors and non-survivors, based on leave-one-out cross-
validation (AUC = 0.88). This gene set is indicated in black, and a random
ROC curve is indicated in grey.
doi:10.1371/journal.pntd.0003061.g005
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from non-survivors, and secondarily can also distinguish the two

non-survivor groups from one another. The case of a survivor

array being misclassified as a non-survivor array is understandable,

given that the array sample is from Day 3, when gene expression

differences are relatively small between all different treatment

groups. We found that leave-one-out cross-validation was able to

correctly classify samples with some accuracy (AUC = 0.88;

Figure 5D), although the classification was not as strong as the

full dataset.

Megakaryoblastic leukemia 1 (MKL1) and myocardin-like
protein 2 (MKL2) jointly regulate some survival-
associated genes

Finally, we identified 8 probes, corresponding to 7 genes, whose

transcription is jointly regulated by MKL1 and MKL2 (Figure 6).

Of these, 2 probes (CEBPE and LTF) distinguished NHPs that

survived EBOV infection (‘‘EBOV-infected, Treated Survivors’’;

ETS) from those that did not (‘‘Non-Survivors’’; NS). Notably,

CEBPE is also co-regulated by another member in the CCAAT-

enhancer binding protein family, CEBPA; therefore, it is included

in both gene sets. In addition, 1 probe (S100A9) distinguished

between survivors and ‘‘EBOV-infected, Treated, Non-Survivors’’

(ETNS), and 5 probes distinguished between survivors and the

‘‘EBOV Only’’ group (EO; BCL2L1, CD151, CTSG, GSTM5,

and LTF). All genes had lower expression values in the survivors

than non-survivors (Figure 6A), with the exception of CD151,

which exhibited significant down-regulation in the EO group.

Importantly, MKL1 and MKL2 appear to co-regulate the full set

of genes (Figure 6B). Notably, the majority of the genes regulated

by MKL1 and MKL2 are also regulated by CEBPA (CEBPE,

LTF and S100A9) or p53 (BCL2L1 and GSTM5), suggesting that

the regulatory pattern exhibited by these genes could be

confounded by regulatory activity from additional transcription

factors.

We confirmed the expression pattern of the 7 genes regulated by

MKL1 and MKL2 by RT-PCR (data not shown). We examined

all genes co-regulated by these transcription factors by comparing

the changes in expression on Days 3 and 6 in the microarray

dataset to the RT-PCR dataset (see Materials and Methods). For

both non-survivor groups, 71.4% of genes exhibited the same

expression trends in both the microarray dataset and the RT-PCR

dataset. For survivors, 85.7% of genes exhibited the same

expression trends in both the microarray dataset and the RT-

PCR dataset. For MKL1 and MKL2-regulated genes, the RT-

PCR confirms the expression trends observed in the microarray

dataset.

A previous study found that a double-knockout of MKL1 and

MKL2 increases expression of CEBPE, CTSG, GSTM5, LTF and

S100A9, suggesting that MKL1 and MKL2 may jointly act as

repressors for these genes under natural conditions [61]. In

contrast, a double-knockout of MKL1 and MKL2 decreases

expression of BCL2L1 and CD151, suggesting that MKL1 and

MKL2 activate transcription of these genes [61]. The expression

pattern observed with this gene set suggests that MKL1 and

MKL2 may be up-regulated or activated in NHPs that survive

EBOV infection, compared to those that do not. Although this

Figure 6. Megakaryoblastic leukemia 1 (MKL1) and myocardin-
like protein 2 (MKL2) jointly regulate some survival-associated
genes. (A) A heatmap depicting the gene expression values of 8
probes (7 genes) which are jointly transcriptionally regulated by MKL1
and MKL2. The days post-infection are labeled at the top of each
column. Probes are grouped according to which comparison identified
them, listed to the left. Gene names are listed to the right. Blue
indicates down-regulation, and red indicates up-regulation, of genes
compared to pre-infection baseline, white indicates no change in
expression (scale indicated). (B) A network illustrating transcriptional
connections between the 7 genes and MKL1/2. Blue indicates lower
expression values in ‘‘EBOV-infected, Treated Survivors’’ (ETS), com-
pared to ‘‘Non-Survivors’’ (NS), red indicates higher expression values in
the ETS group compared to the NS group (scale indicated). Grey nodes
(e.g. MKL1) were not identified as being differentially expressed by our
protocol. (C) A dendrogram depicting hierarchical clustering of
individual samples, using the gene set of 7 probes. ETS samples are

indicated in green; samples are labeled ‘‘groupX_Y’’, where X is the
sample number and Y is the days post-infection. (D) A ROC curve
depicting how accurately this gene set can classify survivors and non-
survivors, based on leave-one-out cross-validation (AUC = 0.97). This
gene set is indicated in black, and a random ROC curve is indicated in
grey.
doi:10.1371/journal.pntd.0003061.g006
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observed expression pattern is consistent with what would be

observed if MKL1 and MKL2 were activated, this set of probes is

too small to distinguish between survivors and non-survivors

groups (Figure 6C; ETS indicated in green). A hierarchically-

clustered dendrogram has two major branches, which are each

interspersed with EO, ETNS and ETS samples; this suggests that

the overall expression profile of survivors and non-survivors is not

statistically distinguishable. Although the dendrogram suggests

that the overall expression profile in each array is incapable of

distinguishing survivors and non-survivors, evaluation of individ-

ual gene contributions using leave-one-out cross-validation shows

that this gene set is capable of classifying samples with high

accuracy (AUC = 0.97; Figure 6D).

Discussion

These results show the potential of high-throughput transcrip-

tional studies for identifying putative markers of survival following

EBOV infection. In particular, we identified a minimal survival-

associated gene set that accurately distinguished survival outcome

following post-infection anticoagulant treatment of non-human

primates (NHPs) infected with EBOV. We identified 20 genes that

were characterized by significant, coherent and opposing expres-

sion patterns when comparing survivors and non-survivors.

Several of these genes exhibit differential regulation as early as 3

days post-infection, prior to the appearance of clinical symptoms

of EBOV infection; this early differential regulation is especially

important for the identification of early-stage biomarkers to

distinguish disease outcomes.

Importantly, several of these genes are associated with different

viral infections [46–50]. Proteins such as ILF3 and RUVBL2 are

known to suppress viral replication in other viruses [44,45,53], and

we observe that their expression is higher in survivors than non-

survivors. Notably, an isoform of ILF3 is known to bind EBOV

protein VP35, suppressing the function of the viral polymerase

[54]. This suggests a mechanism of action in which survivors may

up-regulate the transcription of certain genes, e.g. ILF3, in order

to suppress viral replication.

We also observed that microRNA 122 (miR-122) is down-

regulated in survivors compared to non-survivors, suggesting that

inhibition of miR-122 activity increases survival following EBOV

infection. To date, there have been no studies investigating

whether miR-122 interacts with the EBOV genome, but it is well-

documented that miR-122 binds the Hepatitis C virus genome to

support the replication of this virus [55,56]. Comparison of the

putative binding motifs of miR-122 [55] to the consensus sequence

of EBOV (Mayinga, Zaire, 1976) [62] reveals multiple potential

binding sites in the viral genome (data not shown). This suggests

that miR-122 is worth further investigation as a regulator of

EBOV infection.

Though a minimal set of 20 genes could separate survivors from

non-survivors, we were interested in also studying the general host

response to EBOV infection, and to determine if there was a

survival-associated transcriptional profile. We identified 238 genes

that accurately distinguished treatment groups and survival

outcomes following EBOV infection. Functional annotation of

these 238 genes confirmed that this gene set was comparable with

previously published studies of EBOV infection [21,22,24,27]. In

particular, the expression pattern that we observe for IL6, in which

non-survivors are significantly more up-regulated in early stages of

infection than survivors, is supported by similar changes in protein

concentration reported in previous studies [7,9,25]. There is also a

pattern of significant up-regulation of genes associated with

immune response in non-survivors, but not in survivors, consistent

with the hypothesis that non-survivors exhibit severe dysregulation

of the inflammatory response [21,22,24,27]. Importantly, our

work highlights the utility of using a minimal survival-associated

gene set to identify individual genes correlated with survival

following EBOV infection, which is not possible when assessing

global transcriptional responses in the host, as in previous work

[22,24].

When we compare our data to the results of a study of survival-

associated biomarkers in human samples from the Sudan virus

(SUDV) outbreak [25], we find notable similarities. Similar to this

study, we observed significant up-regulation chemokines and

cytokines, such as CCL3, CXCL10, IL1RN, IL6 and TNF,

throughout infection. This study reported that ferritin was a good

correlate of hemorrhage and death in response to SUDV infection

[25]. We observed down-regulation of ferritin throughout

infection, although this pattern was not correlated with survival

on a transcriptional level. However, we find that another iron-

binding protein, lactotransferrin (LTF) is highly correlated with

survival outcome in EBOV-infected NHPs. This similarity suggests

that iron modulation may play an important role in regulating

filovirus infection, especially in relation to coagulopathies and

hemorrhage, and that our biomarkers merit further study in a

human system.

We identified 3 transcriptional modules which were significantly

enriched in the gene set: (i) CCAAT/enhancer-binding protein

alpha (CEBPA); (ii) tumor protein 53 (p53); and (iii) megakaryo-

blastic leukemia 1 (MKL1) and myocardin-like protein 2 (MKL2).

Previous studies have shown that p53 plays a crucial role during

viral infection, which invariably disrupts normal cell cycle

processes, in a variety of DNA and RNA viruses [63–66]. In

particular, p53 is known to be associated with the Type I

interferon response and has been previously reported to enhance

viral-induced apoptosis in other infections [65,67]. In our

examination of p53-regulated genes, we found that several are

associated with regulation of apoptosis (e.g. BCL2L1 [68], CDC42

[69], CDK2 [70], FOXO3 [71], and PCNA [72]). This may

suggest a role for p53 as a mediator of apoptosis following EBOV

infection. However, due to a lack of a consensus pattern of

expression, we are unable to determine the underlying regulation

of p53 in this dataset, and therefore cannot draw conclusions

about the activity of p53 in NHPs that survived EBOV infection

when compared to non-survivors.

Interestingly, there is no consensus as to how CCAAT/

enhancer binding proteins (such as CEBPA) function in general

during viral infection, but they have been previously implicated in

promoting the replication of some viruses. For example, CEBP

binding sites exist in the Human immunodeficiency virus (HIV)

genome, and CEBPs are required for the replication and

regulation of HIV [73–75] and Simian immunodeficiency virus

[76]. Similarly, physical binding and interactions have been

observed between CEBPs and the proteins of Hepatitis B virus

[77,78], Epstein-Barr virus [79], and HIV [80]. In contrast,

CEBPs have been known to down-regulate or inhibit replication of

T-cell leukemia virus [81,82] and some human papillomaviruses

[83]. Our results suggest that strong CEBP responses are

correlated with poorer prognosis following EBOV infection. We

hypothesize that CEBP-regulated genes may contribute to the

inflammatory response to infection, or to the dysregulation of

coagulation.

Our studies are the first to suggest a role for MKL1 and MKL2

in viral infection, although roles for both proteins were recently

identified in megakaryocyte differentiation and platelet formation

[61]. Because dysregulation of coagulation is a common charac-

teristic of EBOV infection, it is possible that MKL1 and MKL2
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regulate coagulation in response to EBOV challenge. Indeed, we

observe that the downstream targets of MKL1 and MKL2 exhibit

an expression profile consistent with up-regulation of MKL1 and

MKL2 in survivors, compared to non-survivors. This implies that

survivors increase the regulation of coagulation processes,

potentially avoiding the typical coagulopathies associated with

late-stage EBOV infection. However, the majority of genes that

are regulated by MKL1 and MKL2 are also regulated by CEBPA

or p53, suggesting that the regulation observed is not due to the

transcriptional activity of MKL1 and MKL2 alone. Despite this,

these genes display a strong expression profile that is consistent

with up-regulation of MKL1 and MKL2 when compared to a

previous study [61], suggesting that survivors are able to recover in

part due to normal MKL1 and MKL2 function.

It is important to note that we did not find a single unique gene

that distinguished between survival outcomes of EBOV-infected

NHPs, suggesting that survival following anticoagulant treatment

is driven by a complex set of transcriptional responses. In addition,

gene sets and pathways we have identified are associated with

survival following anticoagulant treatment, and are therefore

specific to this condition. We also stress that the observed results

are in EBOV-infected NHPs, and our findings and conclusions

may not be applicable to additional viral infections, although

infection-specific signatures may exist. Under these conditions, we

identify several complex transcriptional responses that clearly

differentiate between survivors and non-survivors following EBOV

infection. In particular, we observe several survival-associated

profiles that are driven by specific upstream transcriptional

regulators (e.g. CEBPA, p53, and MKL1/MKL2). Notably, these

transcription factors have not been previously associated with

EBOV infection, and would not have been identified without

pathway analysis, due to lack of differential regulation. In

particular, the ability of a small set of 20 genes to distinguish

between survival outcomes suggests that they could potentially

serve as biomarkers of disease outcome. Our results demonstrate

that classification of treatment groups or disease outcome can be

accomplished with a small gene set, which can be useful for

identifying individual transcriptional markers associated with

survival following anticoagulant treatment of EBOV infection.

Supporting Information

Figure S1 This figure illustrates the overall process of micro-

array analysis described in this paper, including sample collection,

microarray processing and normalization, and analysis of the data

(as described in Materials and Methods).
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Table S1 This table lists the 20 genes from the minimal survival-

associated gene set (as described in Materials and Methods). The
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the Gene Ontology ‘‘function’’ category.
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Table S2 This table lists 241 genes from the general survival-
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